spacer
Spacer Spacer Spacer Spacer Spacer Spacer Spacer Spacer Spacer Spacer Spacer Spacer Spacer
 
 
Science@Ames
 
Space ScienceSpace Science @ Ames features research in infrared astrophysics, laboratory astrophysics, extrasolar planets, planetary sciences, exobiology, and astrobiology.
 
 
Earth ScienceEarth Science @ Ames features basic and applied research in atmospheric and biospheric sciences, and conducts airborne science campaigns.
 
 
Biological ScienceBioSciences @ Ames features research in fundamental space biology, and provides engineering and payload development for the International Space Station.
 

 
Features
 
NASA Begins Testing of New Spectrograph on Agency's Airborne Observatory
June 3, 2014
 
NASA Begins Testing of New Spectrograph on Agency's Airborne Observatory

Astronomers are eagerly waiting to begin use of a new instrument to study celestial objects: a high-resolution, mid-infrared spectrograph mounted on NASA's Stratospheric Observatory for Infrared Astronomy (SOFIA), the world's largest flying telescope.

This new instrument, the Echelon-Cross-Echelle Spectrograph (EXES), can separate wavelengths of light to a precision of one part in 100,000. At the core of EXES is an approximately 3-foot (1 meter) bar of aluminum called an echelon grating, carefully machined to act as 130 separate mirrors that split light from the telescope into an infrared "rainbow."

SOFIA is a heavily modified Boeing 747 Special Performance jetliner that carries a telescope with an effective diameter of about 8-feet (2.5-meters) at altitudes of 39,000 to 45,000 feet (12 to 14 km), above more than 99 percent of Earth's atmospheric water vapor. Lower in the atmosphere, at altitudes associated with most ground-based observatories, water vapor obscures much of what can be learned when viewed in the infrared spectrum.

"The combination of EXES's high spectral resolution and SOFIA's access to infrared radiation from space provides an unprecedented ability to study celestial objects at wavelengths unavailable from ground-based telescopes," said Pamela Marcum, a program scientist at the SOFIA Science Center and Program Office in Moffett Field, California. "EXES on SOFIA will provide data that cannot be obtained by any other astronomical facility on the ground or in space, including all past, present or those observatories now under development."

EXES successfully carried out its first two flights on SOFIA on the nights of April 7 and 9, according to Matthew Richter, leader of the team that is developing the instrument at the University of California, Davis, Physics Department. EXES is a collaboration between U.C. Davis and NASA's Ames Research Center in Moffett Field.

"During the two flights, EXES made observations to investigate and characterize the instrument's performance. All the main goals of these observations were successful, although further commissioning flights are required to test EXES in all of its modes," said Richter.



On the first commissioning flight, EXES observed emissions from Jupiter's atmosphere in two molecular hydrogen lines. These observations will be used to understand how gas rises from deep in Jupiter's interior and mixes into the planet's upper atmosphere.

During the second commissioning flight, EXES observed a young, massive star in the constellation Cygnus that is still embedded in its natal cocoon. The star, known as AFGL 2591, warms up the surrounding interstellar dust and causes ice coatings on the dust to evaporate. The warmed dust provides an excellent background infrared "lamp" to probe the chemical make-up of the intervening gas.

New stars and planets are forming from that material through processes similar to the ones that made the sun and Earth. These observations are designed to study water vapor around the protostar, and demonstrate that EXES can detect absorption from the lowest energy level of water molecules despite interference from water vapor from Earth's atmosphere.

"Of the observations obtained during the instrument's first flights, only one can be done from the ground, albeit with some difficulty, and the others are impossible from even the best ground-based telescope sites because the water in Earth's atmosphere is opaque at these wavelengths," Richter said. "While space observatories are above Earth's atmosphere, the massive optical equipment required to separate the light as finely as EXES does - EXES weighs almost 1,000 pounds - would be a challenge to launch into space. In these observations, the spectral features we are studying are narrow, and finely dividing the infrared spectrum to detect them is exactly what EXES was designed to do."

SOFIA is a joint project of NASA and the German Aerospace Center (DLR). The aircraft is based at and the program is managed from NASA Armstrong Flight Research Center's facility in Palmdale, California. NASA's Ames Research Center, manages the SOFIA science and mission operations in cooperation with the Universities Space Research Association (USRA) headquartered in Columbia, Maryland, and the German SOFIA Institute (DSI) at the University of Stuttgart.

For more information about SOFIA, visit:

http://www.nasa.gov/sofia

or

http://www.dlr.de/en/sofia


By Rachel Hoover
NASA's Ames Research Center


By Steve Cole/Dwayne Brown
Headquarters, Washington


Image Credit: Credit: Lockheed Martin


NASA Completes LADEE Mission with Planned Impact on Moon's Surface
April 18, 2014
 
NASA's Kepler Mission Announces a Planet Bonanza, 715 New Worlds


Ground controllers at NASA's Ames Research Center in Moffett Field, Calif., have confirmed that NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft impacted the surface of the moon, as planned, between 9:30 and 10:22 p.m. PDT Thursday, April 17.

LADEE lacked fuel to maintain a long-term lunar orbit or continue science operations and was intentionally sent into the lunar surface. The spacecraft's orbit naturally decayed following the mission's final low-altitude science phase.

During impact, engineers believe the LADEE spacecraft, the size of a vending machine, broke apart, with most of the spacecraft's material heating up several hundred degrees - or even vaporizing - at the surface. Any material that remained is likely buried in shallow craters.

"At the time of impact, LADEE was traveling at a speed of 3,600 miles per hour - about three times the speed of a high-powered rifle bullet," said Rick Elphic, LADEE project scientist at Ames. "There's nothing gentle about impact at these speeds - it's just a question of whether LADEE made a localized craterlet on a hillside or scattered debris across a flat area. It will be interesting to see what kind of feature LADEE has created."

In early April, the spacecraft was commanded to carry out maneuvers that would lower its closest approach to the lunar surface. The new orbit brought LADEE to altitudes below one mile (two kilometers) above the lunar surface. This is lower than most commercial airliners fly above Earth, enabling scientists to gather unprecedented science measurements.

On April 11, LADEE performed a final maneuver to ensure a trajectory that caused the spacecraft to impact the far side of the moon, which is not in view of Earth or near any previous lunar mission landings. LADEE also survived the total lunar eclipse on April 14 to 15. This demonstrated the spacecraft's ability to endure low temperatures and a drain on batteries as it, and the moon, passed through Earth's deep shadow.

In the coming months, mission controllers will determine the exact time and location of LADEE's impact and work with the agency's Lunar Reconnaissance Orbiter (LRO) team to possibly capture an image of the impact site. Launched in June 2009, LRO provides data and detailed images of the lunar surface.

"It's bittersweet knowing we have received the final transmission from the LADEE spacecraft after spending years building it in-house at Ames, and then being in constant contact as it circled the moon for the last several months," said Butler Hine, LADEE project manager at Ames.

Launched in September 2013 from NASA's Wallops Flight Facility in Virginia, LADEE began orbiting the moon Oct. 6 and gathering science data Nov. 10. The spacecraft entered its science orbit around the moon's equator on Nov. 20, and in March 2014, LADEE extended its mission operations following a highly successful 100-day primary science phase.

LADEE also hosted NASA's first dedicated system for two-way communication using laser instead of radio waves. The Lunar Laser Communication Demonstration (LLCD) made history using a pulsed laser beam to transmit data over the 239,000 miles from the moon to the Earth at a record-breaking download rate of 622 megabits-per-second (Mbps). In addition, an error-free data upload rate of 20 Mbps was transmitted from the primary ground station in New Mexico to the Laser Communications Space Terminal aboard LADEE.

LADEE gathered detailed information about the structure and composition of the thin lunar atmosphere. In addition, scientists hope to use the data to address a long-standing question: Was lunar dust, electrically charged by sunlight, responsible for the pre-sunrise glow seen above the lunar horizon during several Apollo missions?

"LADEE was a mission of firsts, achieving yet another first by successfully flying more than 100 orbits at extremely low altitudes," said Joan Salute, LADEE program executive, at NASA Headquarters in Washington. "Although a risky decision, we're already seeing evidence that the risk was worth taking."

A thorough understanding of the characteristics of our nearest celestial neighbor will help researchers understand other bodies in the solar system, such as large asteroids, Mercury and the moons of outer planets.

NASA also included the public in the final chapter of the LADEE story. A "Take the Plunge" contest provided an opportunity for the public to guess the date and time of the spacecraft's impact via the internet. Thousands submitted predictions. NASA will provide winners a digital congratulatory certificate.

NASA's Science Mission Directorate in Washington funds the LADEE mission. Ames was responsible for spacecraft design, development, testing and mission operations, in addition to managing the overall mission. NASA's Goddard Space Flight Center in Greenbelt, Md., managed the science instruments, technology demonstration payload and science operations center, and provided mission support. Goddard also manages the LRO mission. Wallops was responsible for launch vehicle integration, launch services and operations. NASA's Marshall Space Flight Center in Huntsville, Ala., managed LADEE within the Lunar Quest Program Office.

For more information about the LADEE mission, visit:

http://www.nasa.gov/ladee

For more information about LLCD, visit:

http://llcd.gsfc.nasa.gov

Rachel Hoover
Ames Research Center, Moffett Field, Calif.
rachel.hoover@nasa.gov

Dwayne Brown
Headquarters, Washington
dwayne.c.brown@nasa.gov

Dewayne Washington
Goddard Space Flight Center, Greenbelt, Md.
dewayne.a.washington@nasa.gov

 
NASA's Kepler Telescope Discovers First Earth-Size Planet in 'Habitable Zone'
April 17, 2014
 
NASA's Kepler Telescope Discovers First Earth-Size Planet in 'Habitable Zone'


Using NASA's Kepler Space Telescope, astronomers have discovered the first Earth-size planet orbiting a star in the "habitable zone" -- the range of distance from a star where liquid water might pool on the surface of an orbiting planet. The discovery of Kepler-186f confirms that planets the size of Earth exist in the habitable zone of stars other than our sun.

While planets have previously been found in the habitable zone, they are all at least 40 percent larger in size than Earth and understanding their makeup is challenging. Kepler-186f is more reminiscent of Earth.

"The discovery of Kepler-186f is a significant step toward finding worlds like our planet Earth," said Paul Hertz, NASA's Astrophysics Division director at the agency's headquarters in Washington. "Future NASA missions, like the Transiting Exoplanet Survey Satellite and the James Webb Space Telescope, will discover the nearest rocky exoplanets and determine their composition and atmospheric conditions, continuing humankind's quest to find truly Earth-like worlds."

Although the size of Kepler-186f is known, its mass and composition are not. Previous research, however, suggests that a planet the size of Kepler-186f is likely to be rocky.

"We know of just one planet where life exists -- Earth. When we search for life outside our solar system we focus on finding planets with characteristics that mimic that of Earth," said Elisa Quintana, research scientist at the SETI Institute at NASA's Ames Research Center in Moffett Field, Calif., and lead author of the paper published today in the journal Science. "Finding a habitable zone planet comparable to Earth in size is a major step forward."

Kepler-186f resides in the Kepler-186 system, about 500 light-years from Earth in the constellation Cygnus. The system is also home to four companion planets, which orbit a star half the size and mass of our sun. The star is classified as an M dwarf, or red dwarf, a class of stars that makes up 70 percent of the stars in the Milky Way galaxy.

"M dwarfs are the most numerous stars," said Quintana. "The first signs of other life in the galaxy may well come from planets orbiting an M dwarf."

Kepler-186f orbits its star once every 130-days and receives one-third the energy from its star that Earth gets from the sun, placing it nearer the outer edge of the habitable zone. On the surface of Kepler-186f, the brightness of its star at high noon is only as bright as our sun appears to us about an hour before sunset.

"Being in the habitable zone does not mean we know this planet is habitable. The temperature on the planet is strongly dependent on what kind of atmosphere the planet has," said Thomas Barclay, research scientist at the Bay Area Environmental Research Institute at Ames, and co-author of the paper. "Kepler-186f can be thought of as an Earth-cousin rather than an Earth-twin. It has many properties that resemble Earth."

The four companion planets, Kepler-186b, Kepler-186c, Kepler-186d, and Kepler-186e, whiz around their sun every four, seven, 13, and 22 days, respectively, making them too hot for life as we know it. These four inner planets all measure less than 1.5 times the size of Earth.

The next steps in the search for distant life include looking for true Earth-twins -- Earth-size planets orbiting within the habitable zone of a sun-like star -- and measuring the their chemical compositions. The Kepler Space Telescope, which simultaneously and continuously measured the brightness of more than 150,000 stars, is NASA's first mission capable of detecting Earth-size planets around stars like our sun.

Ames is responsible for Kepler's ground system development, mission operations, and science data analysis. NASA's Jet Propulsion Laboratory in Pasadena, Calif., managed Kepler mission development. Ball Aerospace & Technologies Corp. in Boulder, Colo., developed the Kepler flight system and supports mission operations with the Laboratory for Atmospheric and Space Physics at the University of Colorado in Boulder. The Space Telescope Science Institute in Baltimore archives, hosts and distributes Kepler science data. Kepler is NASA's 10th Discovery Mission and was funded by the agency's Science Mission Directorate.

The SETI Institute is a private, nonprofit organization dedicated to scientific research, education and public outreach. The mission of the SETI Institute is to explore, understand and explain the origin, nature and prevalence of life in the universe.

For more information about the Kepler space telescope, visit: http://www.nasa.gov/kepler

Michele Johnson Ames Research Center, Moffett Field, Calif.
michele.johnson@nasa.gov


J.D. Harrington
Headquarters, Washington


Karen Randall
SETI Institute
krandall@seti.org

+ View Archives